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ABSTRACT

Augmented and mixed reality are emerging interactive and display technologies. These technologies are able to merge virtual objects, in
either 2 or 3 dimensions, with the real world. Image guidance is the cornerstone of interventional radiology. With augmented or mixed
reality, medical imaging can be more readily accessible or displayed in actual 3-dimensional space during procedures to enhance
guidance, at times when this information is most needed. In this review, the current state of these technologies is addressed followed by a
fundamental overview of their inner workings and challenges with 3-dimensional visualization. Finally, current and potential future
applications in interventional radiology are highlighted.

ABBREVIATIONS

AR ¼ augmented reality, DVR ¼ direct volume rendering, FOV ¼ field of view, HMD ¼ head-mounted display, IPD ¼ interpupillary

distance, OST ¼ optical see-through, SR ¼ surface rendering, 3D ¼ 3-dimensional, 2D ¼ 2-dimensional, VR ¼ virtual reality, VST ¼
video see-through
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Spatial computing is a new paradigm of computing that uses
the immediate, surrounding environment as a medium to
interact with technology. Virtual, augmented, and mixed
reality are all types of spatial computing. Virtual reality
(VR) completely immerses the user in an artificial, digitally
created world. Augmented reality (AR) overlays digital
content on the real world, enhancing reality with super-
imposed information. Mixed reality, also known as merged
reality, represents the fusion of both virtual and real-world
environments, where digital and physical objects coexist
and can interact with each other.

Despite mixed reality devices being an evolution of AR,
traditionally, mixed reality represented a continuum with the
real-world environment at 1 end of the spectrum to a
completely virtual environment at the opposite end (Fig 1)
(1). This review will consider mixed reality as synony-
mous with AR and will focus on AR and its potential impact
on interventional radiology (IR); VR will not be discussed
in detail. Much of the research highlighted has been
demonstrated as proof of concept or as a feasibility study;
more established studies and clinical trials remain to be
published.

One of the key benefits of AR over VR is the ability to
visualize and interact with digital objects while maintaining
views of the natural world. Preserving direct line of sight
with the surrounding environment permits the use of AR
during image-guided interventions, provides relevant depth
cues, and reduces VR sickness, also known as
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Figure 1. Reality-virtuality continuum proposed by Milgram in 1994 (1).
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cybersickness. Cybersickness results from discrepancies
between the visual and vestibular senses and can still occur
with AR, but is less frequent and milder compared with VR
(2).

AR helps increase situational awareness by reducing
shifts in focus (3,4). Strategically placed digital content
minimizes refocusing between the content and the real
world. AR devices can be grouped into multiple, distinct
subtypes (Fig 2): head-mounted display (HMD), handheld
displays, and stationary displays. These classifications can
be further categorized into optical see-through (OST) and
video see-through (VST). OST displays use special
transparent lenses that allow direct views of the external
environment. VST displays use a video feed to indirectly
view the external environment. These categories can be
further subdivided into monocular or binocular. Monoc-
ular displays provide a single channel for viewing.
Binocular displays provide 2 separate channels to each
eye to simulate the perception of depth through
stereoscopy.

An OST display has 3 main components: light engine,
optical combiner, and computer (Fig 3). Special transparent
lenses, called optical combiners or holographic waveguides,
merge digitally created images with light from the natural
world. The optical combiner acts essentially like a partial
mirror, allowing light from the real world to pass through
while redirecting light from the projector to generate a
hologram. A complete evaluation of OST-HMDs and their
applications for surgical interventions is provided by Qian
et al (5).

In general, there are 2 conventional methods for
rendering 3-dimensional (3D) volumetric data: (i) surface
rendering (SR; Video 1 [available online on the article’s
Supplemental Material page at www.jvir.org]), also
known as indirect volume rendering or shaded surface
display, and (ii) direct volume rendering (DVR; Video 2
[available online on the article’s Supplemental Material
page at www.jvir.org]) (6–9). SR is a binary process
with visualization of surface meshes at tissue interfaces
that are usually preprocessed by segmentation and repre-
sent a fraction of the raw volumetric data. DVR is a
continuous and much more computationally intensive
process involving the entire volume of data, but it pro-
vides the most accurate visual 3D representation of
medical imaging (9–11). Both of these methods can be
incorporated into AR displays to render medical imaging
in actual 3D space (9).

The primary advantage of AR displays is the ability to place
and anchor virtual objects anywhere in space.This can be useful
for projecting anatomic models or 3D imaging through the
surgical drape, flat panel detector, or computed tomography
(CT) gantry. However, this feature can also unintentionally
preclude visualization of important physical objects, such as
instruments and the operator’s hands (Fig 4). Therefore, object
occlusion, or the way virtual objects project in front of and
behind physical objects, will be important for managing
virtual content in procedural settings (12).

One of the key limitations of AR displays is the field of
view (FOV) for augmentation. Naturally, binocular FOV of
the human eyes is about 200� in the horizontal plane and
135� in the vertical plane (13). All commercially available
OST-HMDs have <90� horizontal or vertical FOVs, with
most ranging at 30–40� (5). Additionally, most untethered
displays have battery lives of 2–3 hours (14), an important
factor to consider during prolonged procedures. In general,
early clinical studies will seek to define how and whether
AR can potentially offer additional benefits in IR, such as
enhancing anatomic understanding, decreasing procedure
times, and reducing radiation exposure.
3D ACCURACY, TRACKING, AND

REGISTRATION

Accurate tracking and registration are needed for any image-
guided navigation system (15). For binocular displays, pro-
jectional accuracies are dependent on accurate calibration of
the device. Calibration of OST-HMDs is necessary to tailor
projections to the user’s interpupillary distance (IPD) (16).
Inaccurate IPD can result in poor eye–lens alignment, image
distortion, and eye strain. Additionally, small errors in the IPD
as well as off-centering of the device can propagate to large
projectional errors resulting from off-axis projection (17).

Near-perfect accuracies are needed for AR to be useful dur-
ing image-guided interventions. Although measuring accu-
racies of virtual objects in a 2-dimensional (2D) plane is
relatively straightforward, measuring accuracies of virtual 3D
objects is more challenging. Accuracy in depth, or the z-plane,
is affected by the vergence–accommodation conflict (18). Hu-
man eyes naturally converge and focus on an object at the same
distance. However, because most OST-HMDs have fixed focal
planes, the eyes may focus and converge at separate distances,
causing distorted depth perception (Fig 5). This conflict is also
the leading contributor for causing eye fatigue and discomfort,
common symptoms from prolonged AR use (19).

Microsoft HoloLens (Redmond, WA), which was
released in 2016, has been shown to be systematically su-
perior to comparative OST-HMDs on the market for surgical
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Figure 2. Organizational chart on types of AR devices. Specific examples are displayed in italics where appropriate.

Figure 3. General schematic of an OST display. Light from a

projector is reflected through a waveguide using total internal

reflection and diffraction and is directed at specific angles and

wavelengths into the eye to produce a hologram. External light

from the natural world also passes through into the eye.
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interventions (5). Several validation studies have
reported HoloLens accuracy to be near or within one
centimeter (20–25). With subcentimeter accuracies, the US
Food and Drug Administration approved Novarad Open-
sight (American Fort, UT) and Medivis SurgicalAR
(Brooklyn, NY) software applications in September 2018
and May 2019, respectively, for preoperative visualization
using HoloLens.

Tracking is the sensing and measuring of spatial proper-
ties. Registration involves the matching or alignment of
those spatial properties, allowing anatomic imaging to be
overlaid directly onto the patient. AR devices contain
multiple sensors that continuously map and track its position
within the environment, a process known as SLAM (26).
Accurate mapping and tracking are necessary to update
spatial relationships of virtual objects. Full tracking requires
6 degrees of freedom: 3 degrees of freedom in position (x-,
y-, and z-axes) and 3 degrees of freedom in rotation (pitch,
yaw, and roll) (Fig 6). Because AR involves 3D tracking,
accurate registration can be challenging and limited by
built-in sensors, known as inside-out tracking. However,
computer vision algorithms using built-in cameras to detect
and track image-based markers can supplement inside-out
tracking and provide accurate and fast registration
(20,21,27–29).

Many existing AR-assisted navigation systems integrate
an external optical tracking system, or outside-in tracking,
and bypass internal sensors to further improve accuracies or
track additional hardware (30–36). Another external
tracking system commonly used is electromagnetic tracking
(37). Despite the type of tracking, most external tracking
systems provide limited degrees of freedom, balancing
tradeoffs between sensing position and orientation. For
integration with external trackers, each coordinate system
needs to be calibrated and transformed to be congruent
within the same space, or world coordinate system (Fig 7).
Calibration of the AR device and external trackers can be
performed using manual, semiautomatic, or automatic
methods (32,38). Once calibrated, 3D datapoints in virtual
space can be registered to known and tracked points in
physical space.

The aforementioned registration processes have all been
based on rigid transformations. However, multiple practical
considerations impede accuracy and rigid registration, such
as patient motion, breathing, and organ deformation, which
are dynamic processes that may require dynamic and
potentially computationally intensive solutions (39,40).
Respiratory and patient motion continue to remain 1 of the
largest technical and practical hurdles for adoption of many



Figure 4. Object occlusion as a potential unintended consequence of AR. (a) Virtual model within the patient projecting through the

operator’s hands, unintentionally occluding visualization of the hands. (b) Hands are visualized with hologram turned off.

Figure 5. Various visual perception scenarios affecting vergence and accommodation. (a) Focal distance and vergence distance are

equal, which occurs naturally with human vision. This is the ideal configuration for OST-HMDs. (b) Vergence–accommodation conflict

with focal distance greater than vergence distance when virtual objects are projected close to the display. (c) Vergence–accommodation

conflict with focal distance less than vergence distance when virtual objects are projected far from the display.

Figure 6. Six degrees of freedom representing combination of 3

positions (x-y-z) and 3 orientations (roll-pitch-yaw).

4 ▪ Augmented and Mixed Reality: Technologies for Enhancing the Future of IR Park et al ▪ JVIR
navigation or fusion systems in IR, with many systems
opting for simple respiratory gating (41) or a rigid to elastic
switch (35).
AR IN MEDICINE

The enhanced ability of AR to visualize and localize targets
may have downstream implications for improving proce-
dural outcomes, complication profiles, and operating time.
Thus, AR has been explored to augment a variety of surgical
procedures. Recent applications with AR technologies have
been demonstrated in neurosurgery (25,33), otolaryngology
(42), vascular surgery (43), hepatobiliary surgery (44), or-
thopedic surgery (45), plastic surgery (14), and urology
(46). Despite the importance of visualizing and localizing
targets in IR, a recent systematic review of wearable heads-
up displays in an operating room identified IR as having the
fewest number of published studies among 10 other proce-
dural specialties (47). As image-guided experts and proce-
duralists, more experimentation and developments in IR



Figure 7. Various types of tracking, with arrows representing transformations needed for virtual and physical objects to be congruent

within the same space. Red-green-blue axes represent respective coordinate systems. (a) Inside-out tracking using built-in sensors

within the augmented reality headset. (b) Outside-in tracking after integration with an external tracking system. Tracking of real physical

objects by the AR headset (dotted line) is replaced by the external tracking system.
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should be undertaken to evaluate this new visualization
technology as other specialties have done.
IR APPLICATIONS

The role for advanced imaging and technologies in image-
guided procedures has transformed procedural medicine.
The 1996 Radiological Society of North America New
Horizons Lecture emphasized the capability for computers
to enhance visibility and navigate through 3D coordinates
during IR and minimally invasive procedures (48). The
lecture highlighted the promises of preoperative planning to
select optimal approaches, register models onto patients, and
display virtual needle paths, all of which continue to be
active areas of research and applicable to a variety of IR
procedures. More than 2 decades later, these promises still
have yet to be fully realized, but current research endeavors
show progress and potential for translation into the IR suite.
Endovascular Procedures
The additional spatial information provided by AR can
enable the interventional radiologist to obtain a more intu-
itive understanding of complex vascular anatomy. Currently,
interventional radiologists must cognitively associate 2D
images on a monitor screen with a mentally reconstructed
3D model. AR permits the ability to easily visualize 3D
vascular anatomy from prior cross-sectional imaging for
preprocedural planning (49) or use as an intraprocedural
reference (50). This capability can alleviate the continual
process of associating and mentally reconstructing 2D im-
ages into 3D (51). Indeed, cognitive reconstruction and
registration have been shown to be less accurate than
registration with computer assistance for fusion-guided,
needle-based interventions (52).

With AR, the interventional radiologist can look virtually
inside the patient from any viewpoint. Anterior, posterior,
and oblique divisions of vessels can be easily differentiated
and optimally displayed with the added depth dimension
(51). Before the procedure, the interventional radiologist can
simulate ideal fluoroscopic angles and positions that high-
light vessel courses and branchpoints. During the procedure,
a virtual 3D roadmap can be placed anywhere within the IR
suite as a reference to augment vessel selection and catheter
positioning. Acquired cone-beam CT, or rotational angiog-
raphy, can also be projected in 3D to quickly confirm the
target of interest, as opposed to scrolling though axial 2D
images.

AR utilization may also help achieve radiation dose
savings during endovascular procedures in the future. Using
AR and external electromagnetic tracking, Kuhlmann et al
(53) demonstrated the ability to overlay a 3D vascular model
on a patient phantom and virtually track and navigate an
endovascular catheter through the vascular model, foresee-
ably eliminating the need for any radiation for real-time
endovascular guidance.
Percutaneous Procedures
Many AR implementations currently exist for navigation
during percutaneous needle-based interventions. For
example, virtual 3D needle trajectories can be registered to
patients to assist in the placement and positioning of abla-
tion probes (Fig 8); protocol approved by the institutional
review board at the University of Pennsylvania. Moreover,
AR has been shown to reduce procedure times, number of
acquired images, and radiation dose during simulated
percutaneous bone interventions (54). In a similar fashion,
fusion navigation with electromagnetic tracking has been
proven in a randomized controlled trial to reduce radiation,
number of CT scans, indwelling needle time, and the
number of needle manipulations in CT-guided liver biopsies
(55). A clinical trial using HoloLens for percutaneous liver
ablation is currently under way (Fig 9) (56); this protocol is



Figure 8. (a) Metastatic thymoma for cryoablation of cardiophrenic lymph node using AR-assisted visualization intraoperatively.

Preoperative CT was projected using Microsoft HoloLens (Redmond, WA) and Medivis SurgicalAR (Brooklyn, NY). Rendering was

performed on a remote workstation and wirelessly streamed to HoloLens in real time. Holographic 3D volume was manually registered

to the patient using the patient’s nipples as markers. (b-c) A virtual needle trajectory track can be overlaid during planning and used as a

virtual guide during the procedure.

Figure 9. (a) Hepatocellular carcinoma for microwave ablation using intraoperative AR-assisted navigation. The preoperative CT was

projected using surface rendering software and navigation system by MediView XR (Cleveland, OH) and Microsoft HoloLens (Redmond,

WA). The holographic projection was registered to the patient using an electromagnetic tracking system and image-based markers. (b)

Combined real-time tracking of virtual/actual ablation probe relative to tumor target (yellow).
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approved by the institutional review board at the Cleveland
Clinic.

One of the first AR systems for this application was made
by Siemens (Erlangen, Germany) in 2006 and called RAMP,
which used a VST-HMD system to project virtual needle
trajectories during CT- and magnetic resonance imaging–
guided interventions (57,58). More recent AR-assisted
navigation systems have been developed using tablets and
OST-HMDs. An AR-assisted needle guidance system using
an OST-HMD and external optical tracking demonstrated
guidance error between the actual and virtual needle tra-
jectories by less than 2� in a CT phantom (31). Another
system using a tablet computer and computer vision marker
detection achieved sub-5-mm accuracies in a porcine model
and cadaver for liver thermal ablation (28), which has been
subsequently upgraded with a VST-HMD and



Figure 10. Planning an ablation with augmented reality. 3D

surface-rendered model of –40�C and –20�C isotherm ice balls

from manufacturer technical specifications from Galil Medical

(Arden Hills, MN).
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commercialized as Bracco Imaging Endosight (Milan, Italy)
for CT-based tumor ablations. In contrast to these rigid
needle-based navigation systems, HoloLens was used to
project and extrapolate bending 3D needle trajectories with
a shape-sensing needle and reduced targeting error by 26%
compared with rigid needle assumptions (32).

AR can provide enhanced volumetric tumor margin
visualization and localization, potentially leading to more
successful ablation coverage and adequate treatment mar-
gins (59). Higher ablation success rates have been shown in
simulated microwave liver ablation following planning on
3D models, albeit on a monitor screen, compared to 2D
image slices (60). In a similar fashion, AR may help plan
and facilitate optimal probe placement by visualizing theo-
retical ablation treatment volumes in actual 3D space (Fig
10 and Video 3 [available online on the article’s
Supplemental Material page at www.jvir.org]). These plans
can then be transferred and registered onto the patient for
virtual procedural guidance using the planned trajectories.
This approach may give more confidence to the interven-
tional radiologist for approaching and treating targets in
challenging locations that were previously unfavorable,
such as liver dome lesions requiring nonorthogonal or out-
of-plane approaches (15).

AR may be able to help achieve considerable radiation
dose savings and resource utilization during percutaneous
procedures. The use of an AR capable C-arm system
revealed approximately 40%–50% radiation dose reduction
during needle localization of targets in pigs compared with
standard CT fluoroscopy while preserving accuracy (61).
HoloLens and Novarad OpenSight were used to virtually
guide spinal needles into a lumbar spine phantom and
resulted in sub-5-mm accuracies using preoperative CT
alone without the need for any real-time imaging (24).
Training and Instruction
Simulations with AR for medical training are becoming
increasingly popular for teaching procedural and technical
skills (62). AR can help create immersive scenarios within a
real IR suite to improve performance before complex cases
or simulate the use of new equipment before actual use
(63,64). However, current evidence regarding the relative
superiority of AR simulations to conventional instruction is
lacking. One study found no difference in internal jugular
vein cannulation time and total procedure time using AR
compared to conventional instruction (65).

In addition to simulations, AR devices enable the ability
to share environments for collaborative experiences with
other users. Existing interactive platforms allow remote
consultants to project live annotations into the AR display of
another operator, offering remote real-time instruction or
expert assistance (66,67). Additionally, procedures per-
formed with AR HMDs can be broadcasted on a larger
scale, allowing interventional radiologists in rural settings or
developing countries to visualize live or recorded proced-
ures performed by experts (68).
Ergonomics and Workflow
There are benefits to projecting virtual 2D objects as well as
3D objects in IR. AR headsets are able to deploy virtual 2D
monitors that can improve ergonomics, patient monitoring,
and workflow. Virtual 2D monitor screens, as many as
needed, can be placed anywhere within the IR suite for
readily accessible viewing. These virtual screens can be
made as large as desired but will fundamentally be con-
strained by the headset’s FOV. Images from the C-arm or
ultrasound (US) machine can be streamed to the AR headset
in real time with a video capture device (30). This allows the
operator to maintain focus on the task at hand while
reducing gazes away from the procedural field. For example,
virtual 2D monitors placed within the procedural field dur-
ing vertebroplasty can allow the interventional radiologist to
have close observation of cement placement without shifting
focus (69). A randomized control trial in breast phantoms
showed that AR-assisted needle guidance using a VST-
HMD and a virtual screen displaying live 2D US images
along the end of the US transducer led to improved biopsy
needle accuracy compared with standard US guidance (70).

Finally, AR can have beneficial effects on all IR staff
members. C-arms requiring manual positioning can be
cumbersome and require several adjustments until the
desired view is obtained. An AR-assisted virtual C-arm
positioning guide can aid technologists to quickly establish
desired C-arm views, eliminating the need for iterative
refinement and thereby reducing radiation (71). Addition-
ally, AR can be used to project a radiation dose map of the
patient onto the IR table as well as help virtually and
visually monitor radiation dose to staff members during the
procedure in real time (72). Furthermore, the advent of
virtual screens and controls permits the removal of extra-
neous cables, carts, and mounts to allow staff members to
more easily maneuver around the IR suite.

In conclusion, augmented and mixed reality are novel
display technologies that are able to provide a new way to
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visualize images and localize targets during image-guided
procedures. Although IR has been somewhat slow to
adopt such technologies, these technologies may be
appealing to interventional radiologists and image-guided
therapists for readily accessible image viewing or
advanced 3D visualization intraprocedurally. AR-assisted
systems should be further developed and evaluated to see
if they can improve outcomes in IR with safer, more effi-
cient procedures that require less radiation. Clinical evi-
dence is currently lacking, but as these technologies evolve,
AR may become easier to implement and use imaging in an
actual volumetric fashion to enhance interventions. How-
ever, it will be paramount that metrics be established and
clearly defined through validated, high-level, evidence-
based studies. In doing so, translation and adoption into the
IR suite may transform the way future image-guided in-
terventions are undertaken and provide benefits to patients,
operators, and staff.
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